読者です 読者をやめる 読者になる 読者になる

数学雑記

数学など

ガウスの類数1問題についてのメモ

ガウスによって予想された類数についての問題がある.

\quad m\text{を平方因子を持たない正整数とするとき、}

\quad\text{虚二次体}\mathbb{Q}(\sqrt{-m})\text{の類数が1となるのは}

\quad m=1,2,3,7,11,19,43,67,163\text{に限る}

これは整数論の多くの本で「1967年にBakerとStarkが独立に証明した」と載っていて、Baker-Starkの定理と呼ぶものもある。

しかし、それ以前にも実はHeegnerという人が証明をしている。ただ、その証明が拠り所とする主張にはギャップがあり、当時は受け入れられなかった。

結果としてはBakerやStarkが完全な証明をしたので、BakerとStarkの名前を付けるのは至極当然だが、それ以前にも証明をした人はいたという事実は歴史として頭に留めておいても損はないと思う。



参考文献

H.M.Stark, On the “Gap” in a Theorem of Heegner, Journal of Number Theory vol.1(1969), p16–27